Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.26.010165

ABSTRACT

The pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV-1) and COVID-19 coronavirus (SARS-CoV-2) have all emerged into the human population with devastating consequences. These viruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics to combat these highly pathogenic coronaviruses. Here, we describe the isolation and characterization of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs are capable of potently neutralizing MERS-CoV or SARS-CoV-1 S pseudotyped viruses. The crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs block receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S, and demonstrate that this cross-reactive VHH is capable of neutralizing SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Heart Block
SELECTION OF CITATIONS
SEARCH DETAIL